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Abstract  

This paper describes the theory and results obtained with 
the correlation-search technique to solve the translation 
problem in the molecular-replacement method. The 
correlation function is expressed in terms of intensities 
of structure factors and is calculated by fast Fourier 
transforms. 

Introduction 

The number of proteins whose three-dimensional 
structures have been determined by X-ray crystallog- 
raphy and NMR spectroscopy has rapidly increased in 
recent times. The molecular-replacement method 
(Rossmann, 1972; Machin, 1985), which is used to 
determine crystal structures when there exists a hom- 
ologous molecular structure to the one under study, has 
become quite important in protein crystallography. 

In this paper, attention will be focused on the second 
step of molecular replacement, i.e. the translation 
function (TF). The term translation function denotes 
any technique used to determine the position of a 
properly oriented molecule. The most widely used TFs 
were presented in the review article of Fitzgerald (1991). 
A distinction is made between TFs evaluated by Fouriei 
transforms and 'correlation searches' evaluated at each 
sampling point in real space (the latter category includes 
R-factor searches). Although the higher quality of 
'correlation searches' is recognized, their computation 
with available software is in general very time 
consuming. 

In the present work, the fast TF is reviewed and the 
advantages of using correlation coefficients in the 
translation problem are discussed. Finally, the theory 
and some results obtained with a correlation-function 
program, calculated by means of fast Fourier techniques, 
which has been incorporated in the AMoRe package 
(Navaza, 1994) for molecular replacement are described. 
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Notation 

Transformation matrix M s and 
translation vector t s correspond- 
ing to the sth symmetry opera- 
tion. 
Crystal reciprocal-space (row) 
vector. 
Multiplicity of reflection H: 
number of different reciprocal 
vectors generated by applying 
to H all the symmetry opera- 
tions, including Friedel's. 
Fourier coefficient of the crystal 
electron density. 
Observed intensity. 
Fourier coefficient of the ori- 
ented model placed in the crystal 
cell with its center of mass at the 
origin, assuming P1 symmetry. 

Different types of  fast translation function 

This section presents a short review of some translation 
functions that are computed by fast-Fourier-transform 
techniques. In all of them, the observed Fourier 
coefficients are compared with the calculated ones, 

FI.I(X) = ~ f(HM~)exp(2~riHts)exp(Em~BM~x ) (1) 
s 

for each translation x of the center of mass of the oriented 
model. 

Two main types of fast TF may be distinguished. 

(1) Overlap functions 

These are the most widely used translation functions in 
macromolecular crystallography, based on that proposed 
by Crow ther & Blow (1967), which measures the overlap 
between observed and calculated Patterson functions: 

T(x) = ~ mnl~bSlFn(x)l 2 
H 

= ~ ~ mnl~bsf(HM,)*f(HM¢) 
s,s' H 

x e x p { - 2 r r ~ H [ ( M ,  - M A x  + (ts - t A l L  (2) 
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where indexes s and s' run over all symmetry operations. 
The multiplicity m n of reflection H is introduced in order 
to restrict the sum to the asymmetric unit. T(x) is 
evaluated by a simple Fourier summation, with x taking 
values in the Cheshire cell (Hirshfeld, 1968). For a 
complete review of several modifications of this basic 
function, see Tickle (1985, 1992). 

Another overlap function, although based on a quite 
different physical approach, is the full-symmetry phased 
translation function (Cygler & Desrochers, 1989). Its 
reciprocal-space version (Bentley & Houdusse, 1992) is 
computationally similar to T(x): 

PT(x) -- ~ ~'~mn[IF~bS/f(HM~)l 
s,# H 

+ Ig~bs/f(HM,,)l- 20"] 

x f (HM,)*f (HM~,) exp{-  2rriH[(M s - M e)x 

+ (ts - t¢)]}, (3) 

with 0" a scaling factor. We note that T(x) is quadratic in 
the intensities, whereas PT(x) is quadratic in the 
amplitudes. 

(2) Method of Harada, Lifchitz, Berthou & Jolles (1981) 

These authors have provided a number of improve- 
ments to T(x), based on an approximation to the 
correlation coefficient in terms of intensities. They 
ended up with an expression that may be evaluated by 
Fourier transforms. They have introduced the function 

UC(x) = T(x)/O(x), (4) 

where T(x) is given by (2) and 

O(x) = ~ mrxlFs(x)l 2. (5) 
H 

The only difference between HC(x) and T(x) is the 
denominator O(x). As discussed by the above authors, 
this function can be regarded as a measure of the 
intermolecular overlap within the crystal. 

The cumulated experience with the AMoRe package 
has demonstrated the advantages of selecting solutions 
according to the values of the correlation coefficient in 
terms of amplitudes. The strategy developed in AMoRe 
consists in using the values of the translation functions, 
based on the overlap functions discussed above, only as a 
means of selecting a reasonable number of potential 
peaks, but the output is the correlation coefficient, in 
terms of amplitudes, corresponding to the top values of 
the TF. If the correct solution is very low in the list of 
overlap TF peaks, it may not appear in the output. 

Correlation searches in the translation problem 

Perhaps the simplest measure of agreement between the 
sets of observed {[F~bS[} and calculated {IFn(x)[} Fourier 
coefficients, depending on x, is the quadratic misfit 

Q - I ~ m n [ I F ~ b S [ - 2 l F n ( x ) [ - l z ] 2 ) [ ~ m n ]  -1 

-- ([IF~bS I -- 21Fn(x)l-/z]2). (6) 

2 and /.t are introduced to correct scale and shift 
mismatch. Q is a quadratic function of 2 and /z, 
therefore it has a unique minimum. 

Since data are given in arbitrary units, the role of 2 is 
obvious but that of /.t is not so evident within the 
crystallographic context (one would expect /x = 0 for 
normal data). The optimum of/z is 

/z = (1F~bS I - 21Fn(x)l), (7) 

which leads to 

Q = ({IF~bSl- (IF~bSl) -- 2 [ IFn(x) l -  (IFn(x)l)]} 2) 
-- ([AIF~bSl- 2AlFn(x)l]2). (8) 

The optimum of (8) with respect to 2 now gives 

a = ((AIF~bSl)2)(1 - C 2 ) ,  (9) 

where C is the correlation coefficient: 

C = (zaIF~bSlAIFn(x)l)/{((za IFGbSl)2)([zaIFn(x)l]2)} 1/2. 

(lO) 
Expression (6) makes clear the origin of the main 

characteristic of the correlation coefficient, i.e. the 
independence with respect to both the scale and the 

• . 

absolute value of the data. C is intrinsically a cosine, 
- 1  < C < 1; it is a normalized measure of agreement: 
C = 1 corresponds to a total agreement between {IF~bSl} 
and {IFs(x)l}. However, some authors do not u se  
'centered' variables AIFnl, as in the method of Harada 
et al. (1981). 

The correlation coefficient in terms of amplitudes 
seems appropriate for the molecular-replacement 
method. Unfortunately, it cannot be calculated by 
simple Fourier summations because of the numerator in 
(10). 

In the program BRUTE, Fujinaga & Read (1987) use 
the correlation coefficient in terms of 'centered' 
intensities: 

obs 2 2 2 1/2 (AI~bSAIFu(x)IE){((AI~) )([zalFn(x)l])}- , (11) 

which is (10) with amplitudes replaced by intensities. 
This function is computed for each sample point in real 
space. But, as explained in the next section, it can be 
evaluated by using fast Fourier techniques, resulting in a 
considerable saving of CPU time for the three-dimen- 
sional calculations. 

Fast correlation function 

We will consider the general case where the asymmetric 
unit contains several molecules, and call F~ the structure 
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factors corresponding to the models already placed, 
Fn(x ) being as before the contribution of the oriented 
model when its center of mass is placed at x. 

We define the correlation function in terms of 
structure-factor intensities as follows: 

CC(x) = ~ mHAI~b~AIFH(x) + F~[ 2 
H 

X m H ( A / ~ t b s ) 2  

{ x ~mH[ZalFH(X) +f~tl2] 2 . 
H 

(12) 

Then we write the x-dependent part of the denominator 
a s  

mnlFn(x) + F~[ 4 
H 

--[~HmHIFH(X) WF~I2]2(~HmH)-I ( 1 3 )  

and note that the sum within square brackets and the 
numerator of (12) involve essentially the same terms. 
The latter can be written as 

mH A l~tbS {Frl(x)Flt(x) * 
H 

+ [Fn(x)F~* + c.c.] + F~F~*} 

= E ml-IAl~ bs E J;(hs)*j;(hs') 
H s,S" 

x exp[-2yri H(M~ - M~,)x] 

- * m  AI~ bs ~ f(hs) FH + mH s 

x exp(-2zri HMsx ) + c.c.[ 

~"~, AlObs lYmK'm* (14) 
"+" Z _ . , " t H Z ' J ' H  • H ~ H  , 

H 

with f(h~) = f(HMs) exp(2Jri Hts) and c.c. stands for 
complex conjugate. A similar expression, with 
Al~bs = 1, gives the sum between brackets in (13). 
This involves reciprocal vectors up to twice the data 
resolution. 

The first sum in (13) is then developed as follows: 

mHIFH(X) + F~l 4 
H 

=Y~mn E ](h~)*f(hs,)f(he,)*J;(he,,) 
H s,S,,S,',S" 

x exp[-2rri H(Ms - Ms, + M e, - Ms,,,)x ] 

+ 2~ E m H  E f(hs)*jT(hs,)JT(hs,')*F~ 
t. H s,s',s" 

x exp[-2rri H(Ms - Ms, + Ms,,)x ] + c.c. ~, 
J 

+4 ~ m n ~'~ j~(h,)*j~(h~,)F~*F~ 
H s,# 

× exp[-2zriH(M s - Ms,)x ] 

~ * ~  * m 2  + Y]mri}-]f(hs) f(h~,) (FH) 
H s,s' 

x exp[-2Jri H(M s + Ms,)x ] + c .c . /  
, I  

+ 2 { ~ m i - I ~ f ( h , ) * ( F , ) 2 F ~  * 

HM, x] + c.c}, X exp[-2rri 

+ ~_~mH(F~*)Z(F~) 2. (15) 
H 

These terms involve reciprocal vectors up to four times 
the data resolution. 

In summary, three fast Fourier transforms suffice to 
recover the correlation function. The overall computing 
time is about 24 times longer than a standard overlap 
calculation; this includes the use of a finer grid than in 
the standard calculation. 

Test examples 

The results obtained with four different translation 
functions are now compared; the centered-overlap 
function CO [with Zll~ bs instead of I~] bs in (2)], the 
full-symmetry phased translation function PT, the Harada 
et al. (1981) correlation function HC and the correlation 
function CC described in this paper. All these functions 
are now incorporated into the AMoRe package. As 
before, the output of AMoRe is the correlation 
coefficient, in terms of amplitudes, corresponding to 
the highest peaks. 

Several tests were performed using real data. The 
results obtained with erabutoxin-b, solved by molecular 
replacement (Saludjian, Prang6, Navaza, M6nez, 
Guilloteau, Ri~s-Kautt & Ducruix, 1992) are as 
follows. Erabutoxin-b crystallizes in space group 
P212121 (a = 53.36, b = 40.89, c = 66.71 A), with 
two molecules in the asymmetric unit. Data were used 
between 10 and 3.5 A resolution. The orientations of the 
two independent molecules were determined by the 
rotation function. For each of these two orientations, the 
above-mentioned translation functions were calculated. 
The first orientation is a trivial case of molecular 
replacement: the first separated peak in the rotation 
function and the translation function. On the contrary, the 
second orientation, appearing rather low in the rotation- 
function output, illustrates a common feature observed in 
difficult cases: most TFs are poorly contrasted and the 
correct solution is not among the first peaks. The critical 
dependence of the outputs on the parameters that def'me 
the TF implies that, in such situations, the peak height is 
not a reliable criterion to select the correct solution. 
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Table 1. Results of the CO translation function 

The correct solution is ranked ninth. 

Peak Correlation Correlation R factor Peak height 
rank (amplitudes) (intensities) (%) (in tr units) 

1 7.97 10.09 54.42 5.90 
2 8.55 9.12 54.33 4.38 
3 9.99 9.75 54.46 4.25 
4 8.29 9.61 54.52 4.06 
5 9.42 10.20 54.19 3.96 
6 7.53 9.64 54.83 3.94 
7 8.85 9.24 54.60 3.83 
8 10.30 9.36 54.69 3.79 
9 13.21 11.76 53.33 3.73 

10 10.90 9.20 53.38 3.64 

,z3 

, o -  

Table 2. Results of the PT translation function 

The correct solution is ranked 21st. 

Peak Correlation Correlation R factor Peak height 
rank (amplitudes) (intensities) (%) (in tr units) 

1 10.98 9.20 54.42 4.29 
2 5.45 5.17 54.33 4.03 
3 8.8 8.04 54.46 4.01 
4 7.53 5.68 54.52 3.97 
5 7.95 8.08 54.19 3.90 
6 7.88 7.06 54.83 3.83 
7 8.82 9.96 54.60 3.70 
8 8.20 7.23 54.69 3.55 
9 9.49 10.42 53.33 3.55 

10 6.67 7.74 53.38 3.52 
: 

21 11.94 10.69 53.30 3.33 

Table 3. Results of the HC translation function 

The correct solution is ranked first. 

Peak Correlation Correlation R factor Peak height 
rank (amplitudes) (intensities) (%) (in tr units) 

1 13.10 12.30 53.11 4.62 
2 9.95 11.41 54.35 4.51 
3 10.76 11.56 53.96 4.34 
4 8.29 11.51 54.84 4.24 
5 11.07 10.57 53.80 4.24 
6 7.83 8.82 54.31 3.86 
7 10.76 9.59 54.51 3.82 
8 8.21 9.36 54.73 3.78 
9 9.85 10.07 53.50 3.68 

10 7.43 9.39 55.23 3.58 

Table 4. Results of the CC translation function 

The correct solution is ranked first. 

Peak Correlation Correlation R factor Peak height 
rank (amplitudes) (intensities) (%) (100 x correlation) 

1 13.15 12.24 53.07 12.24 
2 10.80 11.65 53.91 11.65 
3 9.79 11.39 54.34 11.39 
4 8.10 11.06 54.44 11.06 
5 11.07 10.58 53.82 10.58 
6 9.60 10.09 53.43 10.09 
7 8.62 9.87 53.63 7.87 
8 8.57 8.78 53.82 9.78 
9 8.52 9.77 54.33 9.77 

10 9.71 9.76 53.67 9.76 

Fig. 1. CO translation-function map. The whole Cheshire cell is 
projected along the b axis. The contour level is 1 tr below the 
maximum value. The correct solution is indicated by symbol #;, it is 
ranked ninth. 

v 

Fig. 2. Same conditions as Fig. 1 but for PT translation function. The 
correct solution is ranked 21st. 

0 

Fig. 3. Same conditions as Fig. 1 but for HC translation function. The 
correct solution is ranked first. 
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The results show (Tables 1 to 4) that the correlation 
coefficients, in terms of either amplitudes or intensities, 
have the greatest contrast, the correct peak being 
systematically at the top of the CC output. In the case 
reported here, the HC function gave the solution in first 
rank too, with essentially the same contrast. The TF maps 
(Figs. 1 to 4) show that, although computed in a finer 
grid, the correlation function has almost the same spatial 
resolution. 

In some 'pathological' examples, the correct solution 
is absent from the CO output. This is the case with the 
low-resolution neutron data corresponding to the cubic 
form of the tRNAASp-synthetase complex. This complex 
crystallizes in space group 1432 (a = 354,~) with one 
dlmer in the asymmetric unit. The correlation function, 
computed with data from 500 to 20 A, gave the correct 
solution as first rank. The solution also appeared with the 
PT function but its rank in the output list was very low 
(below 50) and extremely sensitive to the scaling 
parameter or. The Harada method also failed to give the 
correct solution. A detailed investigation of TF problems 
for this structure was presented by Urzhumtsev, Podjarny 
& Navaza (1994). 

t3 

Fig. 4. Same conditions as Fig. 1 but for CC translation function. The 
correct solution is ranked first. 

Concluding remarks 

The paper has shown the advantages of using the 
correlation function as the main criterion to select 
solutions in the translation problem of molecular 
replacement. Its computation by fast Fourier transforms 
allows one to explore many potential orientations in 
reasonable computing times. This is particularly inter- 
esting for the pseudo-many-body searches, where it is 
crucial to detect the starting correct position of at least 
one individual molecule. Also, the technique appears as 
the only realistic one to deal with very low resolution 
data. 
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